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Several alternative interpretations of all-or-none processes for paired-associate 
learning and concept formation are examined. These models, along with three linear 
models, are applied to data from eight paired-associate learning experiments. The 
principal analyses involve goodness-of-fit tests for observed response sequences and 
conditional probabilities. The results favor a three-process model that postulates a 
distinction between long-term and short-term retention and allows for forgetting 
between successive presentations of the same stimulus item. 

I. INTRODUCTION 

In recent articles Bower (1961, 1962), Crothers (1962), Estes (1960, 1961), Suppes 
and Ginsberg (1963), and others have examined a wide array of data on paired- 
associate learning and concept formation in terms of an all-or-none process. The par- 
ticular model they consider represents a special case of more general models of Stimulus 
Sampling Theory, and has been frequently labeled as the one-element pattern model. 
In a paired-associate experiment the single stimulus element represents a stimulus 
item from a list of paired associates; in a concept formation experiment the stimulus 
element represents a concept, or some aspect of a concept. The two principal assump- 
tions of the model are as follows: (1) Until the stimulus element is conditioned, there 
is a constant probability g that the subject will respond correctly by guessing. (2) On 
each trial there is a probability c that the single element will become conditioned to the 
correct response. Thus, on trial n of an experiment the stimulus element can be 
regarded as being in one of two conditioning states: in state C the element is condition- 
ed to the correct response; in state e the element is unconditioned. The element starts 
out in state e and subsequently moves to state C as specified by the transition matrix 
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By and large, the results reported by Bower, Crothers, Estes, and Suppes and 
Ginsberg indicate a remarkably close correspondence between observed and predicted 
values for the one-element model. The agreement is particularly impressive when 
compared to goodness-of-fit results obtained for other models. However, despite the 

excellent fits of the one-element model, there is at least one aspect of the data that 
is contradictory. As pointed out by Suppes and Ginsberg, when appropriate statistical 
analyses are made one can often demonstrate a nonstationary effect before the last 
error; i.e., there is a tendency for the probability of a correct response to increase over 

trials prior to the last error and not simply remain a constant g, as predicted by the 
theory. 

To account for this nonstationary effect, Suppes and Ginsberg propose a two- 
element stimulus sampling model. Roughly speaking, their model is defined by three 
conditioning states: C,, , C, , and C, . For state C,, both elements are unconditioned 
and the probability of a correct response is g; for state C, one of the two elements is 

conditioned and the probability of a correct response is g’; for state C, both elements 
are conditioned and the probability of a correct response is 1. Applying stimulus- 
sampling axioms, they derive the transition matrix 

and show that the probability of a correct response over trials before the last error 
is an increasing function bounded between g and g’. In their view this two-element 
process represents a conceptual compromise between incremental and all-or-none 
learning models. However, there are at least two reasons why the two-element model 
is unsatisfactory for paired-associate learning. First, while it is reasonable to equate the 
parameter g with the reciprocal of the number of response alternatives, there seems to 
be no convincing experimental interpretation of a value of g’ estimated from data. 

Secondly, we shall see that even when g’ is estimated from data, certain predictions of 
the two-element model are inaccurate. 

The aim of this paper is to develop a model that is conceptually quite different from 
the two-element model, but which predicts the nonstationarity effect and is relatively 
more accurate otherwise. We cite paired-associate data using the anticipation method in 
comparing the goodness-of-fit of the proposed model with the fits of the one-element 
and the two-element models. Also, for purposes of comparison, we examine several 
linear models. Thus the models compared include most of those previously proposed 
to account for paired-associate learning, as well as a variety of new formulations. 

Because of the particular data to be analyzed here, all of the models will be developed 
for a task involving a fixed set of r response alternatives; however, generalization of 
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the model to unrestricted response sets presents no new problems. Specifically we 

shall consider a paired-associate task in which the subject is told the responses available 
to him; each response occurs equally often as the to-be-learned response, and so we 
assume that the probability of a correct response by guessing is l/r. On each trial the 
stimuli are exhibited singly in a new random order. When a stimulus is presented the 
subject is required to make a response and is then informed of the correct response. 

To introduce the proposed model, let us sketch the main argument that motivated 
us toward this approach. When a set of models collectively fails to provide accurate 
predictions of response sequences, a major reason would seem to be that some psycho- 
logical process not represented in the models is influencing behavior. A prime candi- 
date for such a process would appear to be the occurrence of forgetting between suc- 

cessive presentations of the same item; certainly, forgetting is as ubiquitous as 

acquisition. Appreciable forgetting of individual consonant syllables and paired 
associates over short intervals of time has become an established fact (Melton, 1936b; 
Murdock, 1961; Peterson and Peterson, 1959); in these experiments, the subject 
counted backwards during the interval between the reinforced presentation and the 

test. Other experiments by Peterson, Saltzman, Hillner, and Land (1962) resembled 
conventional paired-associate learning studies more closely in that the predetermined 
reinforcement-test intervals were occupied with presentations of other items. The 
empirical findings in these studies enhance the general appeal of the suggestion that a 

forgetting mechanism can increase the accuracy of paired-associate models. Of course, 
there remains the problem of exactly how to express such a process in a model for 
experiments where the subject learns to a criterion. 

To specify a learning model with forgetting, we begin by noting that forgetting has a 
natural Markovian interpretation as a transition to a lower state of learning. Since the 

subject eventually learns to criterion, it seems important to introduce the distinction 
between long-term retention and short-term retention. In the latter state, forgetting 
can occur and corresponds to regression to a state in which errors are possible.2 
Beyond these general remarks, there are a variety of ways in which one can pursue the 
mathematical formulation of learning models that incorporate a forgetting process. 
In the next section we shall consider only the model that appears most promising. 
After the data have been presented, it will be easier to see why certain alternative 
models embodying forgetting processes are less satisfactory. 

II. A LEARNING MODEL WITH ENCODING AND FORGETTING AXIOMS 

The model assumes four stages of learning: L, S, F, and U. Learning is postulated 
to consist of encoding the stimulus (Lawrence, 1963) followed by associating the enco- 

2 A distinction in terms of the retention interval (Melton, 1963a) attributes forgetting to both 
processes and is less convenient for our immediate purposes. 
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ded stimulus to the correct response .3 Before encoding has occurred, the stimulus is 
said to be in state U (uncoded); in this state the subject is assumed to respond by 
guessing randomly among the Y alternatives. After the stimulus is encoded, it can 
become associated to the correct response. Once the association forms the stimulus 

element is absorbed in state L (long-term memory) and the subject makes no errors on 
subsequent presentations of the item. Transitions between the intermediate states S 
and F represent events assumed to intervene between the encoding and association 
phases. State S is a short-term memory state, expressing the notion that a temporary 
connection between the encoded stimulus and the response may form prior to establish- 
ing the permanent association; while the association is temporarily stored the correct 
response occurs with probability 1. However, the temporary connection is susceptible 

to forgetting, in which case the stimulus element is said to pass into state F. Here, as 
in state U, the subject guesses randomly; however, forgetting is only partial, since the 
encoding is retained. 

Stated more precisely, encoding for a given stimulus item occurs at most on one 

trial; the probability that encoding occurs on trial 71 given that it has not occurred on 
previous trial is c. I f  an item is presented that has already been encoded (either on the 
present trial or on an earlier trial), then with probability a it goes into state L and with 
probability l-a it goes into state S. Thus, after each presentation, an encoded item is 
in either stateL or S, and if the item were to be presented again immediately the subject 

would make the correct response with probability 1. However, other events intervene 
from one presentation of an item to its next presentation, and during this period we 
assume there is a probabilityf that an item in state S will move back to state F. We 
assume the value off depends upon the number and type of intervening items; also, 
f depends upon the exposure time of the given item, for this affects the repetition 
rate and hence the slope of the forgetting function (Hellyer, 1962; Peterson et al., 1962). 

Given the above assumptions, it can be shown that moves among the four states 
are described by the following transition matrix and response probability vector: 

L S F u Pr (correct) 

L 1 
S 

[ 

(1 - .;(I -f) (1 Ja).f 
0 1 

a 0 1 
F a (1 - a)(1 -f) (1 -u)f 0 1 II g (3) 

u cu C(l-u)(l-f) c(l-u)f l-c g 

where g = 1 /Y; throughout the paper we shall use g to denote the guessing probability. 
Before proceeding with the derivations, let us mention a few features of this model. 
First, it is clear that the predicted probability of a correct response can increase over 

3 As viewed here, the encoding process is no more than a heuristically useful component of 
the model. There seems to be no point in endowing it with special psychological properties, 
for reasons which will become apparent later. 
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trials prior to the last error. This is because errors later in learning are more likely 
to have occurred in state F than are earlier errors; hence, the later errors would have 
been more frequently preceded by runs of errorless trials in state S. Another property 
which seems desirable is that the model is qualitatively in accord with overlearning 
phenomena; postcriterion training trials produce transitions from S to L, thereby 
increasing retention. 

III. LINEAR MODELS 

For convenience, we classify under this heading all learning models that assume at 
least one of the factors governing the trial by trial change in response probability is a 
linear process. The simplest such model is the single-operator linear model (Bush and 
Mosteller, 1955; Bush and Sternberg, 1959). Th is model assumes that the probability 
of the reinforced response increases according to the equation 

P n+1 = (1 - 4Pn + e (4) 

where p, = l/r. Modifications of the above axiom have frequently been applied to 
probability discrimination learning as well as to paired-associate learning. 

Recently, the ability of the single-operator model to account for paired-associate 
learning has been questioned. The model has been compared unfavorably with the 
one-element model (Bower, 1961; Estes, 1961; Estes, Hopkins, and Crothers, 1960) 
touching off a controversy between proponents of all-or-none learning and incremental 
learning. Our aim in this article is not to support either theoretical position. Instead, 
we assess only the relative merits of the particular models presented here. 

In addition to the single-operator linear model, we shall examine two other models 
which include linearity assumptions. Since these models are more complex than the 
original linear model and contain two parameters, they are especially useful in provi- 
ding comparisons with Markovian processes having more than one parameter. The 
first linear model (Norman, 1963) assumes a two-phase learning process. An event 
called “first-learning” is postulated that occurs on at most one trial for any stimulus 
item; the probability that first-learning occurs on trial K given that it has not occurred 
on a previous trial is c. A subject’s probability of making a correct response depends 
on the trial of first-learning. Specifically the probability of a correct response on trial n 
given that first-learning occurred on trial K is 

Pn= I1 -(l -g{(l -e)-: 
for n<k 
for n > k. (5) 

Thus, for k trials (where k is geometrically distributed with parameter c) no learning 
occurs, whereas after trial k a linear learning process takes over of the form specified 
by Eq. 4. Note that Norman’s two-phase model reduces to the one-element model 
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when &J = 1, and to the simple linear model of Eq. 4 when c = 1. The reader is 
referred to Norman’s paper for a fuller discussion of the properties and interpretation 
of the model. 

An alternative two-parameter model that incorporates a linear learning process also 
has been developed by Norman (1964). In this model, the probability of a correct 

response on trial n + 1 is given by the following equation: 

p nil = 
\u - 4Pn + 0, with probability c 

( P 
(6) 

n 7 with probability 1 - c. 

Thus on each trial exactly one of two events can occur. With probability 1 - c no 
learning takes place, or with probability c the response probability receives an incre- 

ment described by the linear transformation given in Eq. 4. Once again, if 8 = I this 
process reduces to the one-element model, whereas if c = 1 we have the simple’linear 
model. Using Norman’s terminology, we shall refer to this combination of the all- 
or-none and linear axioms as the random-trial-incremental model; henceforth, 
abbreviated as the RTI model. 

IV. PREDICTIONS FOR THE LONG-SHORT MODEL 

We now derive a few basic predictions for the model described in Section II; 
henceforth, for simplicity we shall refer to this model as the LS model, a designation 

that emphasizes the role of the long-term and short-term retention states. We present 
those predictions that are particularly helpful in making comparisons among the 
various models discussed so far. The derivations are carried out for a single stimulus 
item because later, when we analyze data, it is assumed that the stimulus items are 
stochastically independent and identical. Throughout the paper we let U,, , F, , S, , 
and L, denote the events of being in state U, F, S, and L respectively at the start of 
trial n; also e,, and c, denote the occurrence of an error and of a correct response on 
trial n. Further, u, , fn , and s, are used to denote the probabilities of events U, , 

F, , and S, , respectively. 

LEARNING CURVE 

For brevity, let t, = fn + s, . Then, from the matrix in Eq. 3 we obtain 

24, = (1 - c)“-1 

s, = (1 - u) (1 -f) $-I + c(1 - u) (1 -f> %-l 

fn =f(l - a) &-I + cf(l- 4 G-1 * 

(7a) 

(7b) 

(7c) 
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Adding Eqs. 7b and 7c yields 

tn = (1 - a) &-I + c( 1 - a) (1 - C)n-s. 

The solution of this difference equation is (cf. Atkinson and Estes, 1963, p. 148) 

t, = (1 - a)“-1 t, + c(1 - L+ (+=ji. 

Or, since we asume t, = 0, 

There are two cases to be distinguished: 

t, = c(n - 1) (1 - u)n-1, for c =a (84 
and 

t n A&+(1 -(q-l -(I -q-l], for c # a. 

Then, 

fn = ftn =f+;) [( 1 - a)“-1 - (1 - c)+i] 

s, = (1 -f) tn = '(l -cf~'~-a)[(l -a)"-1 - (1 -c)"-l] 
(9b) 

for c # a. When c = a, the expressions for fm and s, are obvious from Eq. ga. 
Since errors occur with probability 1 -g in either state U or F, the probability 

of an error on trial 1z is 

Pr (4 = (1 - d (h + fib) 

= (1 -g) I(1 - c)n-l +‘Gad [(l - a)n-l - (1 - c)+l][ (10) 

E(T), EXPECTED TOTAL ERRORS PER ITEM 

This quantity is the sum of the expected total errors in state U and in state F, which 
we denote as E(U) and E(F), respectively. It is well known that 
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To find E(F) we begin by deriving the probability that the subject eventually enters 
stateF. First, define p as the probability of eventually returning from state S to state F; 
it is easily shown that 

(1 -4f 
‘=a+(1 -a)f’ 

The probability that the subject eventually enters state F is simply 

c(1 -a)f+(l -c)c(l -a)f+(l -c)~c(I -a)f+*** 

+c(l -a)(1 -f)p+(l -c)c(l -a)(1 --f)p 

+ (1 - c)~c(~ - a)(1 -f)p + a** 

= (1 - 4 Lf + (1 -f>Pl = P* 

Given that the subject has entered state F, the equation for the expected number of 
errors in state F has been found previously (Crothers, 1963, p. 5) and is as follows: 

(1 -db+U -4fl 
a 

Hence 

E(F)=(l -g)da +tl -a)fl = t1 -g)(l -a)f 
a a 

Combining these results we obtain 

E(T) = E(U) + E(F) 

=(l -g)[f+L$u]. (11) 

Of course this expression could have been computed directly from Eq. 10; however, 
the derivation was carried out in this way because some of the intermediate results 
will be needed later. 

DISTRIBUTIONOFTHETRIAL NUMBEROFTHE LASTERROR 

Let w, be the probability that the last error occurs on trial n. Further, let b, denote 
the probability of the event “no further errors after a response in state U”, and likewise 
define b, for state F. Then 

w, = Pr (en n U,) b, + Pr (efX n F,) b, 

= (1 -if) LA/ + fnbl- 



Further, 

PAIRED-ASSOCIATE LEARNING MODELS 293 

b,=a+(l -a)(1 -f>(l -pPgpb,)+gf(l --lb,. 

This equation was obtained by considering all of the ways in which the event “no 
further errors after a response in state F” can occur. For example, the term 

(1 - 4 (1 -f>gA represents the probability of the joint event “pass to state S, 
eventually return to state F, make a correct response on the next trial, and make no 
further errors.” Algebraic operations yield 

6, = $ 

where 

Likewise, 

w = a + (1 - u) (1 -f) (1 - p) 

z=l -(I -a)(p-pf+f)g. 

b,=ca +c(l -a)(1 -f)(l -p +gpb,) t-41 -a)&+g(l 

Simplifying and substituting for b, from Eq. 12 yields 

b, = - 
z[l - ;;“- c)g] * 

By using Eqs. 12 and 13 in the above expression for V~ we obtain 

(12) 

(13) 

(14) 

where u, and fn are given by Eqs. 7a and 9a, respectively. 
For the probability that the subject makes no errors, which is denoted as v,, , we have 

v,, =gb,. 

This completes the derivation. 

THE PROBABILITY OF AN ERROR ON TRIAL n + 1, CONDITIONAL ON AN ERROR ON 

TRIAL n 

We begin by finding the probability of an error on both trial n and n + 1; namely, 

Pr (en n e,+d = Pr (en n en+, n U,) + Pr (en n en+, n F,) 

= (1 -g)“{[c(l - u)f + 1 -cl %I +f(l - Q>fn>. (15) 
Then, of course 

Pr (en+, n 4 
pr (e?l+1 I 4 = (1 _ g) (& + fn) * (16) 
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To study the behavior of Pr (e,+r j e,) as n increases, we substitute Eq. 15 in 

Eq. 16 and divide both numerator and denominator by u,: 

Pr (en+, , en )- (1 -RN4 -4ff 1 -cl +.fu -4(fni%N 
1 + ( fn/%) (17) 

Regarded as a function of n, the above equation is dominated by the ratio f,,/u,, in the 
denominator, and from Eqs. 7a and 9a (for a f  c) 

&- 
% 

_ 5$--z [(;z,‘i-l - l] . 

We see that the quantity [( 1 ~ a)/( I - c)]‘“-l increases as n increases if, and only if, 

a is less than c. Under this condition, therefore, Pr (e,,, 1 e,) decreases with increasing 

values of n. 

PROBABILITIES OF RESPONSE SEQUENCES OVER TRIALS n TO n + 3 

In this section we present predictions for four-tuple response sequences; these 
quantities are particularly useful in making comparisons among the various models 

described in this paper. For simplicity we denote the 16 possible outcome sequences 
over trials II to n + 3 as follows: 

o,,,n = GLcn+1c?l+2cn+3 

02,7L = wn+1cn+2en+3 
O,,, = wntlent2cnt3 
O,,,, = cncntlent2en+3 
% = wn+1crL+2cnc3 
O,,, = wn+lc,nL2e,1+3 
O,,, = cnen+len+2c,,+3 
O,,, = c,Len+le,rL+2en+3 

%, = encntlcntzcnt3 
0 10,n = encnt1c~L+pent3 
0 ll,n = wntlent2cnt3 
0 12,n = encn+len+2 e n+3 
0 13,n = wntlcni2cnt3 
0 14,7L = wntlcntzen+3 

%n = w4kt2cnt3 

0 16,,z = wntleni2ent3- 

(18) 

These designations will be used throughout this paper. Although this usage may seem 
inconvenient, it greatIy reduces the complexity of subsequent expressions. 

From the model one can derive expressions for Pr (O,,,) and from these an array 
of other quantities can be computed. For example, 

Pr (wk+2 ) - Pr (O,,,) + Pr (O,,,) + Pr (07,J + Pr (%A -- 
Pr (e,c,+, ) - Pr (O,,,) + Pr (O,,,,) + Pr (O13,d + Pr (015.~)~ - 

and so forth. 
We will not present the derivations for Pr (O,,,) h ere, since they are straightforward 

and involve only elementary probability theory. (Readers not familiar with the methods 
involved in such derivations can consult Atkinson and Estes (1963)) However, the 
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derivations are lengthy and consequently it is of value to present the full array of 

predictions. They are as follows: 

Pr (%J = (1 - sn - fn - %> + (%I + gf,) (a + 4) + ‘ww + 4) + ,$I! 
Pr (OS,,) = 0, + gfm) ~4 + g4cx4 + $41 
Pr (OS,,) = (s, + gfn> 4 + g4Jc& + g&l 
Pr CO,,,) = (s, + gfn> xA4 + gfb&xA, + @,I 
Pr (%J = (sn + gfn) 94 + 94w4 + (1 - d %I 
Pr (%J = (h + gfn) ~4 + ~4&34 + (1 - g> W 
Pr (O,,,) = (s, + gfJy4 + gf4cy4 + (1 - g> 41 
Pr (%J = (sn + ,9fJ YA, + gd.cyA, + (1 - g) B41 
Pr (OS,,) = (1 - g>f& + ~4) + (1 - g> @(a + ~4) + @,I 

Pr (%A = (1 - g>fn4 + (1 -g) 4k4 + g&l 
Pr (Od = (1 - g)f,4 + (1 -g) ~,[c~4 + g&l 
Pr (%,) = (1 - g)fnx-% + (1 - g) u&4 + @,I 
Pr (Od = (1 - g)f,y4 + (1 - d u,ky4 + (1 - .d 41 
Pr (O14,d = (1 - df,yA + (1 - d s[cyA, + (1 -g> %I 
Pr(%d = (1 - h9fny4 + (1 - 64 GY& + (1 - 69 %I 
Pr (%A = (1 - g)f,yA, + (1 -d 4cyA4 + (1 -d 41 

(19) 

where 

x=(1 -a)(1 -f +fg), 
Y = (1 - 4u -&9f. 

And 

A, = a + x(1 -Y), 4 =Yu -Yh 
4 = xy, A, = Y’, 

B, = (1 - c) {ac + CX(1 - y) + g( 1 - C) [c( 1 - Y) + g(1 - c)l>, 
B, = (1 - c){cxy +g(l - c) [l - 41 -y) -g(l - 41, 
B, = (1 - 4 {CYU -Y) + (1 -d (1 - 4 W -Y) + cdl - 41>, 
B,=(l -c){cy2+(1 -g)(l -c)[l -c(l -y) -g(l -c)])-. 

In order to make predictions from Eq. 19, estimates of the parameters a, f, and c are 
needed. There are many ways of making these estimates, but one simple method is to 
minimize the x2 associated with the Oi events.4 To illustrate the method let 

Pr (%; a, f, c) denote the probability of the event Oi,n, where a, f, and c have been 
listed to make explicit the fact that the expression is a function of the three parameters. 
Further, let N(Oi,,) denote the observed frequency of stimulus items that display 
outcome Oi over trials n to n + 3, and let 

T = N(O,,,) + W&J + ... + WO,,J 

’ For a discussion of the x2 minimum method of estimation see Cramer (1951, pp. 424-441). 

6 
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Then we define the function 

X2(a,f, c) = fj CTPr (%G 4f, 4 - W%)12 
i=l TPr (Oi,k a,f, 4 (20) 

and select our estimates of a, f, and c so that they jointly minimize the x2 function. 
A number of problems are involved in carrying out the minimization analytically, and 
consequently we have programmed a high-speed computer to carry out a systematic 
search of possible parameter values until a minimum x2 is obtained that is accurate to 
three decimal places.5 If we assume that all the stimulus items are stochastically 
independent and identical, then under the null hypothesis it can be shown that this 
minimum x2 has the usual limiting distribution with 12 degrees of freedom. 

The minimum x2 has several desirable properties as an estimation procedure; 
the resulting estimates are consistent (as the sample size increases the estimates con- 
verge stochastically to the parameter value), and asymptotically efficient (as the sample 
size increases the variance of the estimates approach the minimal variance attainable 
for any consistent estimate of the parameter, and the distribution of the estimate 

approaches normality). The minimum x2 also provides a measure of the adequacy of 
any single model and, if the degrees of freedom are equal, a method for directly 
comparing the fit of several models. I f  several models are being analyzed, each invol- 
ving a different number of free parameters, then the probability levels of the x2’s 
may be compared. The degrees of freedom associated with a model that requires k 

parameters to be estimated from the data are 

df = 16 --K - 1. 

In the above equation one degree of freedom has been subtracted because of the restric- 
tion that the 16 probabilities must sum to 1. 

V. DATA ANALYSES 

DESCRIPTIONS OF EXPERIMENTS 

In this section we analyze data from eight paired-associate learning experiments that 
all utilize the same general experimental procedure. At the start of an experiment the 
subject is told the responses available to him; each alternative occurs equally often as 
the to-be-learned response and hence the probability of a correct response by guessing 
is roughly 1 /r (where Y is the number of alternative responses). A response is obtained 
from the subject on each presentation of an item and he is informed of the correct 
answer following his response. 

5 The computer program for the search procedure is available through the Institute for 
Mathematical Studies in the Social Sciences, Stanford University, Stanford, California. 
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TABLE 1 

FEATURES OF THE EXPERIMENTAL PROCEDURE 

Experiment 
Number of Number of Number of 

stimuli l-3pXlSf2S subjects Pi- (4 

Ia 9 
Ib 18 
II 12 

III 12 
IV 16 
Va 12 
VC 12 
Ve 12 

26 .95 
16 .91 
65 .83 
40 .75 
20 .84 
40 .60 
40 .71 
40 .85 

Relevant details of each experiment are given in Table 1. Experiments Ia and Ib 
were run with college students. For both experiments the stimuli were Greek letters 
and the responses were the low association trigrams RIX, FUB, and GED; the 
experiments differed in that one used a 9 item stimulus list and other an 18 item list. 
Experiment II was also run with college students using 12 Greek letters as stimuli 
and the numbers 4, 5, and 6 as responses. Experiment III was run with 3rd and 
4th grade students using 12 Greek letters as stimuli and the numbers 2, 3, 4, and 5 as 
responses. Experiment IV was run with college students using double digit numbers 
as stimuli and the letters A, B, C, and D as responses. For Experiments I-IV, 
the experimental procedure (method of stimulus display, presentation rate, etc.) was 
the same as described by Bower (1961). In Experiment V, a group of four and five 
year old children learned a list of paired-associates each day for five consecutive days. 
The lists were composed of double digit numbers as stimuli and letters as responses 
but the stimuli and responses were different for each list. To simplify the discussion, 
only results for days 1, 3, and 5 are presented (labeled Experiments Va, Vc, and Ve 
respectively); however, these data are representative of the results for the full experi- 
ment. A complete description of the experimental procedure and results is available 
elsewhere (Hansen, 1963). 

ANALYSIS OF THE FOUR-TUPLE DATA 

We now turn to an analysis of the response tuples described by Eq. 18 for trials 
2 to 5. For the experiments discussed in this paper, these statistics are of particular 
importance because a major portion of the learning occurred during the first five 
trials. This fact is indicated in the last column of Table 1 where Pr (c& is presented; 
in five of the eight experiments the subjects have reached a correct response level of 
0.83 or better on trial 5. 
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TABLE 2 

OBSERVED FREQUENCIES FOR THE Oi,z EVENTS 

Experiment 

Ia Ib II III IV Va vc Ve 

NO,.,) 123 125 303 160 117 82 144 216 
W%A 3 3 14 13 3 11 18 4 
N(%) 6 10 19 16 10 14 23 17 
NO,,,) 1 4 12 11 1 13 9 6 
NO,,,) 16 21 54 24 15 22 28 34 
N(%~) 3 0 17 6 3 21 14 16 
NO,.,) 5 6 32 18 9 20 12 12 
N(%) 2 3 18 7 6 31 13 12 
NO,,,) 43 55 125 57 54 58 62 66 
N(0,o.J 1 5 15 9 7 13 14 4 
N(%z) 7 10 25 27 9 34 25 17 
MO,,,,) 2 2 17 14 10 18 14 7 
W0,s.J 15 30 61 33 34 34 28 29 
NO,,,,) 0 1 19 25 8 21 20 8 
N(0,s.J 6 6 30 24 22 26 21 19 
N(Om,) 1 7 19 36 12 62 35 13 

T 234 288 780 480 320 480 480 480 

Table 2 presents the observed frequencies of the Oi,z events for each study. Experi- 
lent Ia has 26 subjects each run on a list of 9 stimulus items, and hence there are 
26 x 9 = 234 item-response sequences. As indicated in the table, for 123 sequences 
no errors occurred on trials 2, 3, 4, and 5; 3 sequences displayed no errors on trials 
2, 3, and 4 but an error on trial 5, and so on. 

The x2 minimization procedure described by Eq. 20 was applied to the data given 
in Table 2 for each of the paired-associate models. Table 3 presents the parameter 
estimates associated with the minimum x2 values. For the LS model the minimization 
was carried out for the general case (where the three parameters a, f,  and c were esti- 
mated simultaneously), and also for the special case where c = 1; henceforth, we shall 
refer to the first case as the LS-3 model and the second case as the LS-2 model (the 
3 and 2 designate the number of free parameters to be estimated). In five of the eight 
experiments the estimate of c for the LS-3 model was virtually equal to 1; hence, in 
these instances the LS-3 model reduced to the two parameter version. 

One property of parameter estimates that appears desirable is monotonicity over 
the three sets of Experiment V data. This property seems reasonable since the subjects 
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TABLE 3 

PARAMETER ESTIMATES FOR THE VARIOUS MODELS 

Model Parameter - 
Ia 

One-element c .383 

Experiment 
-.___ 

Ib II III IV Va Vc Ve 

.328 .273 .203 .281 .125 .172 .289 

Linear e .414 .328 ,289 .258 ,297 .I64 .250 .336 

Two-phase C .563 .484 .352 .359 .398 .227 .406 .422 
e ,664 ,633 .695 .563 .648 .500 .477 .656 

RTI Q .531 .461 .344 .328 .367 .219 .359 .438 
.820 .805 .867 .797 ,859 .727 .711 .789 

LS-2 .352 .305 .250 .188 .266 .109 .I56 .258 
.719 ,805 .805 .789 .836 .844 .727 ,680 

LS-3 

Two-element 

f” 
C 

g’ .883 .852 ,922 .891 ,922 .797 .859 .844 
b .391 .398 .227 .078 .195 .133 .016 .227 
a .539 .477 .344 .320 ,359 .219 .352 .477 

.367 .352 .250 .188 .289 .109 .156 .266 

.648 ,375 .805 .789 ,789 .844 ,727 .688 
,844 .500 l.ooo 1.000 ,789 1.000 1.000 .992 

and procedures were the same, and the over-all proportion of errors decreased steadily 
over the five experimental sessions. However, Table 3 reveals monotonicity only for 

the parameter estimates associated with the LS-3 and LS-2 models (and, of course, 
for the one-parameter models). 

For each of the models, the ranks of the magnitude of the parameter estimates were 
consistent over the eight experiments. For the two-phase model and the RTI model the 
estimate of E was consistently less than that of 8; for the LS model, â  <j <: c^; and for 
the two-element model 6 < a” < 1’. It is interesting to note that in the RTI model 

ê  3 0.71, and in the two-element model $’ > 0.79. These high estimates imply that 
for both models the first stepwise increment in response probability is rather large. 

As indicated earlier, Experiments Ia and Ib are comparable except that the former 
study used a list of 9 items and the latter an 18-item list. In regard to the LS-3 model, 
It is interesting to note that the conditioning parameter a is about the same for both 
list lengths. However, the list-length variable not only influences f, but e as well. 
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TABLE 4 

MINIMUM x2 VALUES 

Olle- Linear Two- 
Experiment element model phase RTI LS-2 LS-3 

Two- 
element 

Ia 30.30 SO.92 17.51” 9.74” 6.75” 5.67” 9.30” 
Ib 39.31 95.86 18.25” 13.09” 19.69” 12.42” 12.74” 
II 62.13 251.30 54.78 29.11 3.73” 3.73” 28.46 

III 150.66 296.30 95.44 51.12 33.02 33.02 47.13 
IV 44.48 146.95 22.39” 10.66” 12.32” 10.77” 10.32” 
Va 102.02 201.98 59.20 40.17 24.41” 24.41a 39.47 
VC 246.96 236.15 99.97 46.43 27.12” 27.12 34.75 
Ve 161.03 262.56 126.05 84.07 20.12” 20.12” 77.39 

Total x2 836.89 1542.02 493.59 284.39 147.16 137.26 259.56 

df 14 14 13 13 13 12 12 

a Not significant at .Ol level. 

TABLE 5 

OBSERVED AND PREDICTED RIBPONSE SEQUENCE PROPORTIONS FOR EXPERIMENT II 

Observed One- 
Outcomes proportion element 

~~~..- 

01 .389 .362 
02 .018 .007 
0, .024 .015 
04 ,015 .014 
05 .069 .047 
06 .022 .014 
0, .041 ,029 
08 .023 .028 
09 .I61 .178 
01, .019 .014 
01, .032 .029 
012 .022 ,028 
013 .079 .093 
014 .024 ,028 
015 .038 .059 
016 .024 .055 

Linear Two- 
model phase 

.220 .328 

.045 .008 

.069 .022 

.014 .OlO 

.112 .066 

.023 .012 

.035 .028 

.007 ,021 
.198 .210 
.041 .014 
.062 .035 
.013 .021 
.lOl ,102 
.021 .024 
.032 .055 
.007 .042 

RTI 

,354 
.017 
.028 
.Oll 
.063 
.013 
.026 
,020 
.189 
.018 
.034 
.020 
.092 
.024 
.051 
.040 

Long- Two- 
short element 

.390 .357 

.017 .018 

.029 .029 
,020 .Oll 
.064 .062 
.020 .013 
,034 .026 
,023 .020 
.164 .188 
,020 ,018 
.034 .034 
,023 ,020 
.074 .091 
.023 ,024 
.039 .050 
.026 .039 
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Table 4 presents the minimum x2 values; i.e., the values obtained by using the para- 
meter estimates listed in Table 3. The x2 values needed for significance at the 0.01 
level are 26.22, 27.69, and 29.14 for 12, 13, and 14 degrees of freedom, respectively. 
To indicate the magnitude of discrepancy that produces a particular value of x2, 
Table 5 gives the observed and predicted response sequence probabilities for Experi- 
ment II. (We chose to display data for this experiment since it included the largest 
number of observations.) 

Tables 4 and 5 demonstrate that certain models perform markedly better than do 
others. Neither the one-element nor the simple linear model yields accurate predictions. 
The sources of the disparity for these two models are about the same in all sets of 
data, and are indicated by Table 5. Especially prominent is the tendency for the 
linear model to predict too few sequences of all correct responses. 

According to Table 4, the RTI model is consistently more accurate than the other 
two models which include linearity assumptions. Since the additional analyses to be 
reported corroborated this finding, we conclude that the simple linear and two-phase 
linear models (as well as the one-element model) are relatively inadequate. Hereafter, 
we shall restrict our attention chiefly to the remaining models. 

Of the three-parameter models, the two-element model is less accurate than the 
LS-3 model in seven of the eight experiments. Both the LS-3 and LS-2 models do 
reasonably well. As Table 4 indicates, the number of data sets with significant x2’s 
is less for these models than for any others. Also the values of x2 summed over data sets 
are lowest for the long-short models (see Table 4). The addition of the c parameter to 
the long-short formulation created only little improvement in the fits. This finding 
reflects the fact, mentioned earlier, that the estimate of c was usually close to 1. 

To summarize Table 4, the long-short models are superior in predicting response 
sequence frequencies; of the remaining models, the RTI variant is most accurate. 
In the sequel, we shall be primarily concerned with testing these three models against 
other statistics. 

TABLE 6 

OBSERVED AND PREDICTED PROPORTIONS CORRECT ON TRIAL 2 

Experiment Observed RTI LS-3 LS-2 

Ia ,679 .624 ,665 ,689 
Ib .597 .581 ,586 .627 
II ,601 .532 ,598 ,598 

III .531 .446 ,519 .519 
IV .513 .487 .510 .540 
Va .446 .369 .435 .435 
vc .544 .442 .538 .538 
Ve .660 .509 .618 .622 
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One factor that explains why the long-short models do better than the RTI model 
on the x2 measure becomes obvious when an inspection is made of the learning 
curves (Eq. 10) associated with the parameter estimates given in Table 3. All three 
models accurately predict the Pr (e,) over trials except that the RTI model does 
rather poorly for trial 2. Table 6 presents the observed and predicted proportions 

correct on trial 2. For each of the eight sets of data, the discrepancy is greater for the 
RTI model than for the long-short models. The mean deviation between observed 
and predicted proportions is 0.07 for the RTI model against 0.01 for the long-short 
model. 

ERROR RATE CONDITIONALIZED ON PREVIOUS ERRORS 

We now consider Pr (e,,, 1 e,), the probability of an error on trial n + 1 conditional 

on an error on trial n. It will be seen that this statistic, although not independent of 
those discussed in the previous subsection, is quite useful in discriminating among 
various models. For example, in the one-element model 

Pr(e,+,/4=(1 -g)(l -CL 

which is constant over trials; whereas, for the simple linear model 

Pr (en+, I 4 = (1 - g) (1 - 0) 

and decreases as n increases. 

According to the RTI model, Pr (e,+i 1 e,) must decrease as n increases. As indicated 
in Eq. 7, for the long-short formulation the trend of this conditional probability 
depends on the parameter values. When we plot the observed values of Pr (e,,, / e,) 
as a function of n for each of our eight experiments the results are fairly decisive. For 
six of the eight curves, Pr (e,+r ( e,) clearly d ecreases as n increases. The exceptions 
are Experiments Va and Vc; in both of these cases the observed functions appear to 
be reasonably constant over trials. Also, Williams (1962) found that the probability 

of an error, conditionalized on no prior correct responses to that paired-associate 
item, decreased over trials. Using the parameter estimates given in Table 3, we find 
that the RTI model and the LS-3 model fit our observed Pr (e,,, / e,) curves about 
equally well. I f  we compute the sum over trials of the absolute difference between 
predicted and observed values, then for Experiments III, IV, and Ve the RTi model 
yields a smaller sum than the LS-3 model, whereas the opposite is true for the” tiler 
five experiments. 

A strong prediction of the long-short formulation when c = 1 is that Pr (e,,, / e,) 
is constant over trials; i.e., 

Pr (en+, I 4 = (1 - 4 (1 -df. 
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. 
Since this prediction was borne out in only two of the eight experiments, we are 
inclined to reject the LS-2 model as an adequate theory of paired-associate learning. 
However, in this regard it is interesting’ to note that the Vincent curve method sug- 

gested by Suppes and Ginsberg (1963) to test the stationarity prediction of the one- 
element model gives rise to ambiguous results when applied to the LS-2 model. For 
the LS-2 model we have stationarity after trial 1 and before the last error, but it is 
confounded by the probability of a correct response on trial 1. Specifically, if Pr (c, / eL) 
is the probability of a correct response on trial n, given that the last error occurs on 

trial m (m > n), then for the LS-2 model 

pr (cn I 4 = ) 1 -ff; _ g), 
for n=l 

for n > 1. 

This result implies that a Vincent curve constructed by the methods prescribed by 
Suppes and Ginsberg will not be constant under the assumptions of the LS-2 model. 
Instead, it will exhibit an increase from the first part to later parts. 

In the LS-3 model, the relation c < 1 changes the second equality in the above 

equation to an inequality; i.e., 

Pr (c,~ ( ek) < 1 - f( 1 - g), 

for m > n. This inequality follows from the fact that the subject can be in state U 
on trial n. After substituting g = Q for Experiments Ia, Ib, and II and g = a for 
Experiments III, IV, and V and using the estimates off from Table 3 we see that the 
predicted upper bounds on Pr (c, j e&) are surprisingly low. The theoretical propor- 

tions in question range from 0.37 to 0.75 with a median of 0.46. To test whether the 
data satisfied the above inequality, we used the observed proportion correct on the 
trial immediately preceding the last precriterion error as an approximation to the 
observed maximum of Pr (c, 1 ek). Except for Experiments III and Vc, the relevant 

observed proportion was quite near or below the predicted upper bound. In both of 
these data sets, the observed proportion exceeded that predicted by approximately 
0.07. The import of this discrepancy is hard to ascertain. Considering the low pre- 
dicted values, it is gratifying that the observed quantities did not further overshoot 
the predicted upper bounds. However, the error appears too large to be attributable 
to sampling fluctuations. Perhaps a decline in f  after trial 5 contributes to the error in 
predictions for Experiments III and Vc. The next section traces the development of a 
model in which f does decrease over trials and some problems with this formulation 
are noted. 

TRIAL-DEPENDENT FORGETTING PROCESS 

More generally, any Markov model with only one error state and constant transition 
and guessing probabilities predicts the stationarity of Pr (e,,, / e,). For example, 
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consider a model developed by Crothers (1963) that distinguishes between three 
states of learning; a guessing state (c), a weak state of conditioning in which forgetting 
can occur (S), and a strong state of conditioning (L). The general formulation of his 
model is in terms of the following matrix and response probability vector: 

L s C Pr (correct) 

L 1 

[ 

0 0 1 

a 
:c 

l-a--b b 1 . 
l-c-d d 1 [I g 

This model predicts a nonstationary Vincent curve, but (like the LS-2 model) it also 

predicts that Pr (e,,, 1 e,) is constant over trials. In fact, our LS-2 model is a special 
case of the Crothers model. For when c = 1 it is no longer necessary to distinguish 
between states U and F in the matrix of Eq. 3, and therefore the process can be descri- 

bed as follows: 

L s e Pr (correct) 

L 1 0 0 1 

S 

I 

a (1 -a)(1 -f) (1 -a)f 1 11 1 . (21) 
(5 a (1 - a)(1 -f) (1 - a)f g 

Despite an unrealistic prediction (i.e., that Pr (e,,, 1 e,) is constant over trials), the 

LS-2 model describes many aspects of the eight data sets remarkably well, as indicated 
by the results in Tables 4 and 5. Hence, for the moment it seems worthwhile to retain 
the basic structure of the LS-2 model and determine what can be gained by pursuing 
a generalization of the forgetting process that would permit Pr (e,,, ) e,) to decrease 
over trials. We now examine one such generalization as an alternative to the LS-3 

and RTI models. 
Under the assumptions of the LS-2 model, if item i is reinforced it passes into stateL 

with probability a or into state S with probability 1 - a. Once in L it is trapped there; 
but if in S it may move back to e. That is, other stimuli intervene from one presenta- 
tion of item i to its next presentation and during this period there is probabilityf that 
forgetting will take place (i.e., item i will pass from state S to I?). Thus the forgetting 
process depends only on the number of intervening stimuli and is independent of 
the stage of learning. One obvious generalization is to assume that the likelihood of 
forgetting is not simply a function of the number of intervening items, but depends 
on the number of intervening items that have not already been learned. With this 
modification the transition probabilities become functions of the trial number, and the 
matrix in Eq. 21 is rewritten as 

L S e 

(1 -a):1 -F,,) (1 -“a)Fn 

I 

, (22) 
(1 - a)(1 -F,) (1 - a)F, 
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where F, is a function of the number of unlearned items that intervene from the nth 
presentation of item i to its n + 1st presentation. Let us assume that each unlearned 
stimulus gives rise to complete forgetting of item i with probability f’. Thus, if there 
are K unlearned stimuli presented between the nth and n + 1st presentation of item i, 
then 

F, = 1 - (1 -f’)“. 

By an unlearned stimulus item, we mean an item not already in state L. Further, for a 
list length of X + 1 items the expected number of unlearned items that intervene 
between the nth and n + 1st presentation of a particular item is simply 

X(1 - a)n. 

Using this expected value as an approximation to the actual number of unlearned items 
that intervene from the nth to the rz + 1st presentation of a given stimulus item we 
can write 

F, = 1 - (1 -f’)X(W”‘. 

Finally, to attain more generality, let us assume that forgetting also can occur during 
the intertrial interval with probabilityf. Including this factor in the forgetting process 
yields the following expression: 

F, = 1 - (1 -f)(l -f’)X(l-a)n. (23) 

The model described by Eqs. 22 and 23 has three parameters: f, f’, and a. Also, the 
model takes explicit account of the list length variable and the intertrial interval. 

Henceforth, this model will be referred to as the trial-dependent-forgetting process 
(TDF model). Of course, for the TDF model, Pr (e,,, 1 e,) is a decreasing function 
of the trial number; i.e., 

Pr(en+lIen)=U -g>U -4F,. 

When f’ = 0, the model reduces to the LS-2 process. 
Using Eqs. 22 and 23, we generated expressions (comparable to those given by 

Eq. 19) for four-tuple response sequences. Minimum x2’s were then computed for the 
data reported in Table 2; in carrying out the minimizations account was taken of the 
list length variable X + 1 as given in Table 1. Two sets of minimizations were run: 
one involved estimating the three parameters a, f,  and f ‘; the other involved estimating 
only a and f’ (under the assumption that f = 0). Th e resulting x2 values and associated 
parameter estimates are given in Table 7. The two-parameter case yields a total x2 
value of 205.92, which compares favorably with the total x2’s for the other two- 
parameter models (see Table 4). The three parameter case yields a total x2 of 137.55 
which is virtually identical to the total x2 value for the LS-3 model. Thus, in terms of 
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TABLE 7 

PARAMETER ESTIMATES AND MINIMUM x2 VALUES FOR THE TDF MODEL 

Three parameter case Two parameter case 
Experiment 

Ia 
Ib 
II 

III 
IV 
Va 
vc 
Ve 

X2 a f’ J x3 

5.18” ,328 
15.07” ,281 
3.71” .242 

33.02 .188 
8.92” .250 

24.41” .109 
27.12 .156 
20.12” .258 

,094 .391 6.44” .289 .I41 
.086 .266 15.36” .266 .102 
.016 .766 15.55” .219 ,156 

0 .789 44.40 ,164 ,141 
.094 ,398 9.80” ,242 ,133 
.016 ,836 28.92 .I02 .414 

0 .727 39.24 .141 .320 
0 ,680 46.21 .211 ,281 

Total ,$ 137.55 205.92 

a f’ 

a Not significant at .Ol level. 

these analyses it is difficult to choose between the LS-3 model (which postulates a 
constant forgetting process and a coding operation), and the three parameter version 

of the TDF model (which does not postulate a coding operation but makes the for- 
getting process time dependent). However, the fact that the TDF model is non- 
Markovian greatly enhances the difficulty of performing derivations (e.g. of distribu- 
tions and expectations) for an infinite sequence of trials. Also, other ways of intro- 
ducing processes with trial-dependent parameters can be suggested that are a priori 
about as plausible as the approach outlined. These reasons lead us to doubt that the 
TDF model is among the more promising conceptualizations. 

TRIAL NUMBER OF THE LAST ERROR AND TOTAL ERRORS 

Our final test of the LS-3 model consisted in predicting the expected total errors 

per subject-item, and the distribution and expectation of the trial number of the last 
error. The theoretical values for Experiments Ia and Ib were obtained by substituting 
the parameter estimates given in Table 3 into Eqs. 11 and 14; the predicted expected 
trial of last error was approximated by direct computation based on the first eleven 
terms of the theoretical probability distribution, which summed to approximately 0.99. 

As one would expect, there is good agreement between the observed and predicted 
mean trial number of last error. The one serious discrepancy disclosed by Table 8 
is that the first two terms of the probability distribution of k (the trial number of last 
error) are inadequately predicted in Experiment Ia. According to the model, the 
distribution should be peaked at k = 1, whereas the observed proportions attain a 
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TABLE 8 

OBSERVED AND PREDICTED (LS-3 MODEL) VALUES FOR EXPERIMENT Ia AND Ib 

Exp. Ia Exp. Ib 

Obs. Pred. Obs. Pred. 

Expected total errors 

Expected trial of last error 

Probability of last error on trial k 
k=O 
k=I 
k=2 
k=3 
k=4 
k=5 
k=6 
k=7 

1.52 

1.76 

.27 .17 .16 .14 

.24 .34 .26 .27 
.19 .19 .19 .19 
.13 .ll .17 .13 
.lO .07 .11 .09 
.04 .05 .07 .06 
.02 .03 .02 .04 
.Ol .02 .oo .03 

1.54 

2.05 

1.65 

2.08 

1.79 

2.45 

maximum at K = 0 and decrease monotonically over k. There is also a slight tendency 
to underestimate the peaking at K = 1 in Experiment Ib. 

Further work is required to determine the source of the discrepancy in the initial 
terms of this distribution. At present, it is uncertain to what extent the deviation 

indicates an actual departure from the assumed learning mechanism. An alternative 
explanation is that the learning parameters increase (or the forgetting parameter 
decreases) over trials. I f  this were the case, the estimates based on trials 2-5 would 
predict slower learning than that observed. 

VI. DISCUSSION AND CONCLUSIONS 

The results of our analyses indicate that five of the seven models tested yield 

relatively unsatisfactory predictions for paired-associate learning under the experi- 
mental conditions described. One immediate question is why the one-element model 
was consistently inaccurate. At first glance, the reply might be that we estimated 
parameters and tested predictions in a different fashion than did Bower (1961). 
However, the model fails in Experiment Ia where well over 95% of the errors are 
included in the four-tuple analysis; further, for our experiments the Pr (e,,, 1 e,) 
curves do not exhibit the stationarity predicted by the one-element model. Therefore, 
it seems more likely that differences in experimental method are responsible for the 
inadequate performance of this model, The most important procedural difference 
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appears to be that the number of response alternatives was two in Bower’s study and 
three or four in the experiments reported here. 

Of the models considered in this paper the LS-3 and the RTI models seem to 
warrant first consideration for future experimental tests and theoretical development. 
The findings in favor of the former model are not conclusive, but its parameters have 

been identified more closely with psychological processes. Such interpretations are 
helpful in suggesting how the parameter estimates should change under various 
experimental manipulations. Experiments Ia and Ib provide evidence on this point 
for the list length variable. As another example, it would be of interest to determine if 
the forgetting parameter f  is invariant when the type of paired-associate stimulus is 

changed from one experimental condition to another. Also, perhaps rehearsal of 
irrelevant material during the intertrial interval would affect only the forgetting 
parameter. 

Another direction for further investigation involves improving the minimum x2 
technique of parameter estimation, especially when the data in question display a 

high proportion of errors after trial 5. We can write equations for seven-tuples (trials 
2-8) without much difficulty. The derivation depends upon finding the state pro- 
babilities of trial 5 conditional on a particular sequence on trials 2-4, and then using 
Eq. 19. Beyond seven-tuples, however, the derivations become quite cumbersome. 
Further, it is pertinent to know how well the parameter estimates based on four- 

tuple data will predict statistics that include data from other trials. Our preliminary 
work on this point involved using estimates generated from the x2 minimum method 
to predict the distribution of the trial number of the last error and total errors. 
Obviously tests of this type need to be extended to other statistics and data sets.6 

Further work also should include examining the extent to which the LS-3 model 

can be altered without reducing its goodness-of-fit. The remaining remarks are aimed 
at suggesting what can be done in explorations of this nature. 

In our original formulation of the long-short model it seemed natural to view 
forgetting as an event that influenced response probability by changing the learning 
state. On the other hand, forgetting can be interpreted as affecting the response 
probability directly, without producing a state transition. That is, the LS-3 model can 
be rewritten by collapsing states S and F and making the response probability in the 
single intermediate state (let us call this state SF) a function of the forgetting para- 
meter. For the transition matrix and response probability vector we have 

(24) 

’ For a discussion of this general topic the reader is referred to an article by Sternberg (1963, 
pp. 89-99). 
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This representation of the LS-3 model is algebraically identical to the original formu- 
lation given in Eq. 3. Hence both formalizations yield identical predictions for response 
events and any preference for one over the other would seem to derive from their 
respective heuristic merits. For example, one way of treating response latency within 

the framework of the LS-3 model is to postulate a latency distribution associated with 
each of the learning states. For the data we have seen, there is reason to believe that it 
would be necessary to postulate four such distributions to give an accurate account 
of latency measures. Hence, if one were to take this approach to the analysis of latency 
data, then the formalization given by Eq. 3 would be more natural than that of Eq. 24. 

The three-state representation given in Eq. 24 suggests two ways of modifying 

the LS-3 model that leave the forgetting mechanism unchanged but affect other 
aspects of the process. One such modification is to assume that passage into state L 
occurs with probability a on any trial regardless of the current state. In this variation 
of the LS-3 model, the transition matrix and response probability vector (for the 
representation in which states S and F are collapsed) are as follows: 

where c > a. Applying this model to the four-tuple response data yields the parameter 
estimates and associated x2 values shown in Table 9. In terms of the total x2 measure, 
this model is as accurate as the original LS-3 model. 

TABLE 9 

PARAMETER ESTIMATES AND MINIMUM x2 VALUES 

FOR THE MODEL DESCRIBED BY EQ. 25 

Experiment 

a 

Parameter 

f 
X2 

c 

Ia .336 ,617 .761 6.15 
Ib ,221 ,365 .475 13.50 
II ,250 ,898 .994 3.78 

III .I88 ,781 .950 32.92 
IV .234 .541 .455 8.34 
Va ,109 .844 .993 24.43 
VC .156 ,729 ,980 27.06 
Ve ,266 .688 .995 20.36 

Total x2 136.54 
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Another variation of the LS-3 model suggested by an inspection of Eq. 24 is to 
assume that in state U there is probability c of moving to state L, whereas in either 
state S or F there is probability a of moving to state L. More specifically, we have in 

mind a three parameter variation on the LS-3 model with the following transition 
matrix and response vector: 

L SF u Pr (correct) 
0 1 
0 

(1--)(1-a) Ii 1 l--f+& * (26) 
g 

Applying this model to the four-tuple data yields the parameter estimates and x2 
values given in Table 10. For this model the total x2 is almost twice that obtained for 
the original LS-3 model. 

TABLE 10 

PARAMETER ESTIMATES AND MINIMUM x2 VALUES 

FOR THE MODEL DESCRIBED BY EQ. 26 

Parameter 
Experiment ~ X3 

a f c 

Ia .391 ,445 .297 8.05 
Ib .398 ,315 .156 12.49 
II .242 .563 ,234 11.47 
III .227 .427 .156 46.20 
IV .250 .469 .227 8.68 
Va .188 .479 .063 37.30 
VC .273 .344 ,078 57.02 
Ve .289 .511 .2.58 65.61 

Total x2 252.82 

Our aim in citing these two variations on the original LS-3 model has been to 
indicate the degree of discrimination that is attainable among related models by using 
four-tuple data. The version given in Eq. 25 fits as well as the original LS-3 model. 
This fact is grounds for affirming the caution voiced in connection with the TDF 
model; namely, that a single accurate model and its interpretation should not be 
prematurely accepted. On the other hand, the model given in Eq. 26 was far less 
adequate, so we can sharpen an earlier conclusion. The relatively inaccurate fit of 
the two-element model (Section V) led us to assert that not all plausible three-para- 
meter models yield equally accurate fits; now we note that considerable discrimination 
can be achieved within a special family of three-parameter models. 
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APPENDIX 

The aim of this section is to derive necessary and sufficient conditions under which 
the members of a restricted class of Markov models yield algebraically equivalent 
expressions for probabilities of response n-tuples. Of course, they will then yield 
equivalent equations for summary statistics (expected total errors, etc.). The results 
that we present in this section are in the same vein as those obtained by Green0 (1964). 

We consider two models, each with states L (long-term), S (short-term), and U 
(unconditioned). Throughout this section we also assume that the subject begins in 
state U and that the probability of a correct response equals g in state U and equals 
one in both states S and L. Let the state transitions be described by the matrices 
[A] and [B] for the first and second models, respectively, where 

1 0 0 

VI = a21 a22 a23 T  

[ I 

(A-1) 

a31 a32 a33 

0 0 

FBI = d,l '22 b23 . 

i 1 b 31 b32 b33 

What conditions must the bij entries satisfy in order that Models A and B are 
isomorphic in their predictions of response sequence probabilities ? A trivial sufficient 

condition is that aij = bij for each i and j. What is more interesting is that Models A 
and B are equivalent if and only if the following equalities hold: 

Q33 - -b 33 (A-2) 

az2 - -b 22 (A-3) 

a32 "23 = 32 b - b,, . (A-4) 

Requirement (A.2) follows from the fact that Pr (eJ = (1 - g) a33 in Model A and 

Pr (e,) = (1 -g) b,, in Model B. Likewise, the equations for Pr (e3) can be used to 
show that Eq. A.4 must hold in order that the models be isomorphic. Then by sub- 
stitution of Eqs. A.2 and A.4 into the two equations for Pr (e,), we derive the relation 
a22 = b,, as another necessary condition for equivalence of the models. 

To prove that Eqs. A.2-A.4 are sufficient to ensure equivalence, it is only necessary 
to show that any n-tuple of responses can be written in the form 

Pr (n-tuple) =f(& % a22, a33, a23 - a32>y (-9 

i.e., that a23 and a32 enter only as the product a23a32 . We assume that ‘the subject was 
in U on the trial before the start of the n-tuple. Of course, the number of the trial in U 
is immaterial. 
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It suffices to prove Eq. A.5 for each of the (2” - 1) n-tuples which include at least 

one error, since then this equation must hold for the one remaining n-tuple. For 
expositional convenience, we indicate the method of proof by taking a particular 
n-tuple, say czcae,c,c, . Here n = 5 and 

Pr (cac,e,c,c,) = Pr (cac5 1 e4) Pr (c2caeq). (8.6) 

Now we argue by induction on n. It is obvious that Eq. A.5 holds for n = 1; the pos- 
sible 1-tuples are Pr (ca) = Pr (ca 1 e,) and Pr (ea) = Pr (ea / ei). The second principle 
of finite induction allows us to assume (A.5) for K < 1~. In particular, 

Pr (w5 I 4 = Pr (w2 I 4 

and we assume that Pr (caca j e,) can be written in the form of (A.5). The next step 
is to show that (A.5) also holds for the second factor on the right side of (A.6). A 

sequence ending in an error can occur in one of two ways. Either the subject remains 
in U throughout the sequence, or he passes to S and eventually returns to U. In order 
to end the sequence in U, each transition from U to S must be followed by a transition 
from S to U, which in turn implies that (A.5) holds. Therefore the second factor on 
the right side of (A.6) satisfies (A.5). H aving established that each of the two factors 
on the right side of (A.6) fulfills (A.5), it follows that the product of the two factors 

can be written in the form of (A.5). 
In general, all but one of the n-tuples starting on the trial after a response in U 

can be decomposed into an (n - k)-tuple which ends in an error and a K-tuple which 
begins on the trial after an error. The foregoing reasoning shows that the probability 
of each of the tuples satisfies (A.5). Hence the product of the two probabilities satis- 
fies (A.5). Q.E.D. 

A pair of transition matrices that indeed satisfies Eqs. A.2-A.4 is 

,r;l-E ; ,~;+ 

V’sl=~ ; 1;;;~) 
After making the substitutions 

a =Y, 1-c--d=l-a, and (1 - a) d = (1 

(-4.7) 

(A.8) 

x -y) 2, 
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we have 

i 

1 0 0 

r21 = Cl--a)c a (1 - u) d 
c+d c+d- . 

0 c+d l-c-d I 

Hence Model T, , which assumes that direct transitions do not occur from U to L, 
is indistinguishable at the response level from Model T, , which assumes that imme- 
diate transitions from S to L are impossible. Estimates of the corresponding off- 
diagonal entries in T, and T, will differ numerically, but the predicted n-tuple pro- 
babilities will be identical. 

The results summarized in Eqs. A.2-A.4 are helpful in understanding when the 
addition of parameters to a 3-state model will lower the goodness-of-fit x2. For 
example, let us compare the 3-parameter Model T, (cf. Eq. A.7) with the LS-2 model. 
The transition matrix for the latter has the form 

[LS-21 = 

i 

Now denote by aA, k, and d the minimum x2 estimates of a, c, and d in Eq. A.7. What 
algebraic relationship must hold among the 8, e, and d values in order that the LS-2 
model yield as good a fit as the T, (or T,) model? 

By Eqs. A.2 and A.3 we choose a’ and b’ so as to satisfy the equations b’ = a and 
1 - a’ - b’ = 1 - c - d. Referring to Eq. A.7, we see that Eq. A.4 holds if and 
only if 6( 1 - e - 8) = (1 - a^) d. Th ere f ore we begin by using the computer search 
routine to find aA, e, and 8. If the two sides of the foregoing equation are approximately 
equal, then the 2-parameter LS-2 model will fit virtually as well as the 3-parameter 
model. 

In practice, the goodness-of-fit x2 is diminished only slightly when we go from the 
LS-2 model to the T, (or T,) model. Table 11 compares these x2 values for the experi- 
ments described in the body of this report. Except for Experiment Ve, the reduction 
in x2 is minimal. 

No further improvement in the goodness-of-fit x2 is possible by going from a 
3-parameter model (Tl or T2) to a 4-parameter model. Perhaps the truth of this 
statement is obvious from Eqs. A.2-A.4, but we shall demonstrate it explicitly. Let Zij 
represent the minimum x2 estimate of a,? for the 4-parameter model in (A.l). Having 
the Zij values at hand, we can produce the same minimum x2 value from the 3-para- 
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TABLE 11 

MINIMUM x2 VALUES FOR THE Two AND THREE PARAMETER LS-MODEL 

Experiment LS-2 T, and Ta 

Ia 6.75 6.61 
Ib 19.69 1837 
II 3.73 2.80 
III 33.02 31.78 
IV 12.32 10.79 
Va 24.41 23.98 
VC 27.12 24.10 
Ve 20.12 14.56 

Total x2 147.16 132.99 

” 
meter Model T, . Equations A.2 and A.3 tell us to choose 8, c^, and d to meet the con- 
ditions 

. . n 
a = a22, 

and 
,. ” n 

1 - c - d = us3. 

Then by (A.4) and (A.7) we take 

d” = 4+ = â 2242 . 

a 1 - a^,, 

Because we can always pick 8, c”, and d” so that these three conditions are fulfilled, the 
3-parameter Model T, (or T,) is isomorphic to the 4-parameter model in Eq. A.l. 
For expository purposes it was convenient to regard the & as known prior to the 
calculation of a ,̂ c^, and G!; however, by the above argument, there would be no point 
in finding the & estimates. 
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